Expansion, folding, and abnormal lamination of the chick optic tectum after intraventricular injections of FGF2.

نویسندگان

  • Luke D McGowan
  • Roula A Alaama
  • Amanda C Freise
  • Johnny C Huang
  • Christine J Charvet
  • Georg F Striedter
چکیده

Comparative research has shown that evolutionary increases in brain region volumes often involve delays in neurogenesis. However, little is known about the influence of such changes on subsequent development. To get at this question, we injected FGF2--which delays cell cycle exit in mammalian neocortex--into the cerebral ventricles of chicks at embryonic day (ED) 4. This manipulation alters the development of the optic tectum dramatically. By ED7, the tectum of FGF2-treated birds is abnormally thin and has a reduced postmitotic layer, consistent with a delay in neurogenesis. FGF2 treatment also increases tectal volume and ventricular surface area, disturbs tectal lamination, and creates small discontinuities in the pia mater overlying the tectum. On ED12, the tectum is still larger in FGF2-treated embryos than in controls. However, lateral portions of the FGF2-treated tectum now exhibit volcano-like laminar disturbances that coincide with holes in the pia, and the caudomedial tectum exhibits prominent folds. To explain these observations, we propose that the tangential expansion of the ventricular surface in FGF2-treated tecta outpaces the expansion of the pial surface, creating abnormal mechanical stresses. Two alternative means of alleviating these stresses are tectal foliation and the formation of pial holes. The latter probably alter signaling gradients required for normal cell migration and may generate abnormal patterns of cerebrospinal fluid flow; both abnormalities would generate disturbances in tectal lamination. Overall, our findings suggest that evolutionary expansion of sheet-like, laminated brain regions requires a concomitant expansion of the pia mater.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

FGF2 Delays Tectal Neurogenesis, Increases Tectal Cell Numbers, and Alters Tectal Lamination in Embryonic Chicks

Intraventricular injections of the fibroblast growth factor 2 (FGF2) are known to increase the size of the optic tectum in embryonic chicks. Here we show that this increase in tectum size is due to a delay in tectal neurogenesis, which by definition extends the proliferation of tectal progenitors. Specifically, we use cumulative labeling with the thymidine analog EdU to demonstrate that FGF2 tr...

متن کامل

Laminar redistribution of a glial subtype in the chick optic tectum.

Lamination is a central feature of structural organization and segregation within the central nervous system. Afferent fibers typically restrict their synapses to only one or a few specific laminae in the target region. Astroglial cells act as boundary markers for functional segregation of inputs in somatosensory cortex and the olfactory bulb and might also help to segregate particular connecti...

متن کامل

Retinal removal up-regulates cannabinoid CB(1) receptors in the chick optic tectum.

The endocannabinoid system has been implicated in several neurobiological processes, including neurodegeneration and neuroprotection. The aim of this study was to evaluate the effects of unilateral retinal ablation on the expression of the cannabinoid receptor subtype 1 (CB(1)) at both protein and mRNA levels in the optic tectum of the adult chick brain. After different survival times postlesio...

متن کامل

Contributions of the optic tectum and the retina as sources of brain-derived neurotrophic factor for retinal ganglion cells in the chick embryo.

Retinal ganglion cells (RGC) are supported by brain-derived neurotrophic factor (BDNF), but it is not known if BDNF acts as a target-derived factor or as an afferent or autocrine trophic factor. Here we demonstrate that BDNF mRNA is expressed in the retinorecipient layer of the chick optic tectum as well as in the inner nuclear layer and ganglion cell layer of the retina. Amacrine cells rather ...

متن کامل

Retrograde axonal transport in the central nervous system.

When horseradish peroxidase is injected into the optic tectum of a chick, axons of ganglion cells transport it centripetally to their cell bodies in the retina at a rate of about 72 millimeters per day. After intraocular injections in the young chick, the peroxidase is transported centripetally along efferent axons, and is concentrated in cell bodies within the isthmo-optic nucleus. This retrog...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Proceedings of the National Academy of Sciences of the United States of America

دوره 109 Suppl 1  شماره 

صفحات  -

تاریخ انتشار 2012